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LETTER TO THE EDITOR 

Exact calculation of the anomalous dimension of the diffusion 
coefficient for a model of a random walk in a random potential 

J Honkonent and Yu M Pis’makS 
t NORDITA, Blegdamsvej 17, 2100 Copenhagen 0, Denmark 
$ Department of Theoretical Physics, State University of Leningrad, Ul’yanovskaya 1, 
Staryi Petergof, 198904 Leningrad, USSR 

Received 24 April 1989 

Abstract. Renormalisation of a model of classical diffusion in a random potential is 
analysed. It is shown that at two dimensions the one-loop expression for the anomalous 
dimension of the diffusion coefficient is perturbatively exact leading to the coupling- 
dependent value 1/ Y = 2 + g/4r of the exponent Y. 

We consider the problem of a random walk in a random potential described by the 
equation 

where x is the position of the particle diffusing in the random potential $, and 7 is 
Gaussian noise with zero mean and the variance vm(t)7,(t’)  = 2 D 0 6 ( t ’ - t ) 6 , , ,  which 
defines the bare diffusion coefficient Do. The correlations of the random potential are 
Gaussian with zero mean and the variance 

($(x)$(x’))o = go(-A)-YX - x’) (1) 

where A = V2 is the Laplace operator, and the (non-negative) bare coupling constant 
go describes the strength of the disorder. 

This model is a special case of the extensively studied model of a random walk in 
a random environment [ 1-31, and it has the remarkable property that the beta function 
corresponding to the renormalised coupling constant g is trivial [4] (i.e. all the loop 
contributions to it vanish). It has also been conjectured [ 3 , 5 ]  that for the anomalous 
dimension of the diffusion coefficient the one-loop result [ 2 , 3 ]  is exact. In this letter, 
we present a perturbative proof of this conjecture for the model presented above. 
Unfortunately, our argument does not apply to the generalisation of this model [ 5 , 6 ] ,  
in which the random potential correlations are proportional to ( - A ) - ( ’ + a )  (a > 0), and 
it remains an open question whether or not this conjecture is valid for the generalised 
model. 

For t > 0 and arbitrary initial conditions, the distribution function P(x ,  t )  of the 
position x of the random walker satisfies the Fokker-Planck equation 

[ a ,  - Dod, (a,$ + a,)] P = LP = 0 
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and we shall construct a perturbation expansion for the retarded Green function L-’ 
of this equation. For convenience, we exclude the variable t by Fourier transformation: 

G,=L;’ L,=- iw-D,V(V$+V) .  

Averaging the functional integral representation of the Green function: 

G,(x, x’) = det L, D$Dqcp(x)@(x’) exp[-6L,cp] I 
over the Gaussian distribution (1) of the random potential $ (the integral over x in 
the exponent here and in other similar formulae is implied), we arrive at a field theory 
with the action 

1 
S = -- V$V$ + 6 [  mo+ V(V + V $ ) ] q  

2go 

where we have scaled the fields cp and 6 so that mo = iw/ Do, and omitted the term 
Tr In L,. The only effect of this term is to cancel graphs with closed loops of the q@ 
propagator, and we shall neglect the contribution of such graphs by convention. The 
averaged Green function (Gu)o is simply related to the full cp$ propagator Go of the 
field theory (2) :  Do(GJ0= Go. 

It has been shown earlier [4] that the field theory ( 2 )  is multiplicatively renormalis- 
able (this is not at all trivial), and that the beta function corresponding to the 
renormalised coupling constant g is trivial: p ( g )  = -Eg, where E = 2-3 ( d  is the space 
dimensionality). In terms of the renormalised action, this is a consequence of the 
property that only one renormalisation constant 2, is needed for multiplicative renor- 
malisation of the field theory (2),  and the renormalised action is thus of the form 

where the scale setting parameter p has been introduced. The anomolous dimension 
of the diffusion coefficient yD is related to the renormalisation constant 2, as follows 

(4) 

where the subscript indicates that the partial derivative is taken with fixed values of 
the bare parameters. Using the connection between the full propagator G of the 
renormalised field theory (3 )  and the averaged Green function (G,J0: D(G,),= 
D0Z;’( G,)o = G, where D is the renormalised diffusion coefficient, and the correspond- 
ing renormalisation group equations [ 6 ]  we obtainfor the long-time behaviour of the 
mean-square displacement of the random walk (x’)~ in two dimensions (up to non- 
perturbative effects) 

- 
(x’( t ) )oK  t ’ IC2+Y&)) = t’” 

which relates the anomalous dimension yD to the exponent v. Due to triviality of the 
beta function, the anomalous behaviour is not universal: the exponent v depends on 
the renormalised coupling constant g, which is an arbitrary parameter for the same 
reason, and we choose g = go. We shall show that yD(g) = g/4m exactly in perturbation 
theory, which corresponds to subdiffusive behaviour for g > 0. 
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Since we shall make use of the two-dimensionality of the model in an essential 
way, we cannot use the dimensional regularisation scheme. Therefore, we regularise 
the field theory ( 2 )  by introduction of a cutoff parameter A at large momenta. The 
essential point is that the anomalous dimensions and the beta function do not depend 
on the renormalised mass in of the model [7]. Therefore, we may calculate them in 
the massless theory, and henceforth set in = 0. In this case, the normalisation conditions 
of Green functions are usually defined at some finite values of external momenta, 
which then determine the momentum scale p of the renormalised theory. However, 
we shall be constructing the perturbation expansion for a slightly modified model, for 
which this procedure is not sufficient, and therefore introduce the scaling parameter 
p as the infrared cutoff in the regularised ++ correlation function: 

which also takes care of the ultraviolet regularisation of the field theory ( 2 ) .  The full 
propagator G of the massless renormalised field theory may obviously be found by 
averaging the solution G,(x, y )  of the equation 

z,v [V + v + ( X I  1 G, ( 4  Y 1 = - 6 (x - Y 1 ( 6 )  
over the ‘renormalised’ distribution of the random potential $: 

It is convenient to introduce the function R 

R(x, Y ;  $1 = 2 1  exp[$(x)lG,(x, Y )  

v exp[-+(x)lVR(x, Y ;  +) = -w - Y ) .  

for which from the equation (6) we obtain 

Introducing a new field variable V: 

V(x; +) = exp[-$(x)] - 1 

we cast the differential equation (7) into the form 
[V2+ V V(X; +)VI  R(x, Y ;  +) = -S(X - Y )  

the Fourier transformation of which yields (we use the same notation for Fourier 
transforms and originals V and R): 

The averaged solution of this equation (R) is equal to the full & propagator of the 
auxiliary field theory with the action 

(10) 
1 S =  --v+v$-v+ exp(-+)Vq 

2 g  
Also in this field theory all closed loops of the & propagator are zero by definition. 
We regularise it using the regularised ++ correlation function ( 5 ) .  Denoting the 
functional average with the weight exp(S) by double angular brackets, we express the 
full propagator G of the original field theory (3) as 

G(x1 -x2) = z;’((exP[-+(xl)l~(xl)~(x2))). (11) 
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Due to the close relation between field theories (3) and (lo),  it is natural to assume 
that their renormalisation properties are also connxted. Nevertheless, this is not 
obvious a priori; therefore a separate analysis of the renormalisation of the field theory 
(10) is required. All the fields are dimensionless, but it turns out that only the 
one-particle irreducible ( IPI)  Green functions of the form r G V p g n ,  n = 0, 1, 2, . . . , are 
superficially divergent. This follows from the absence of closed pC;I loops and the fact 
that due to the derivatives at the interaction vertices the real degrees of divergence of 
the IPI graphs are reduced by unity for each external cp or 4 leg. Further, in spite of 
the presence of an infinite number of interaction vertices in the action (lo),  only one 
renormalisation constant is needed to make the theory finite in the limt A+m.  This 
is a consequence of the invariance of the action (10) with respect to the following 
transformation of fields: 

which leads to the Ward identities 

r3;(xI)'p(x2) = - dYr3;(XI)P(X2)+(Y) I 
and 

from which it follows that the renormalisation constants of all the interaction vertices 
in the action (10) are equal to the renormalisation constant of the free-field term V@V(p. 
This implies, in particular, that the beta function of the renormalised coupling constant 
g is trivial also for the model (10). 

Let us introduce the generating functional G(a, C;, b )  of the full Green functions 
of the field theory (10) 

G(a,  6, b )  = DcpD$D+ exp(S+ cpa + @C; + +b) (12) I 
where a, a' and b are, respectively, the source fields of cp, C;I and +, and the generating 
functional of the connected Green functions W(a,  6, b )  = In G(a, C;, b) .  For the 
expression on the right-hand side of the equation (11) we obtain in terms of these 
functionals 

((exp[-Jl(xl)l~(xl)i(x2))) 

where we have denoted the derivatives of the functional W by corresponding subscripts, 
and used the identity G(a, a', b)la=i=o=exp(ib(Jl+)b), which follows from the 
definition (12) of the generating functional. 
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The operator exp(-S/Sb(x,)) shifts the functional argument b of the functional 
on the right-hand side of the equation (13): b ( x )  + b ( x )  - S(x - x J ,  therefore 

((exP[-$(xl)Ip(xl)~(x2))) 

(-1y 
= exp(4($(xl)$(xI))) c - dy, . . . dynNy, - X I )  . . . 6 ( y n  - X I )  ,,=o n !  

Let us denote 

Then from ( 1  1 )  and (14) we finally obtain 

We have already shown that all the Green functions W2;n with distinct arguments may 
be renormalised by a single renormalisation constant, and power counting shows that 
when the arguments corresponding to $ fields coincide, no additional divergences 
appear. Further, we shall show below that even this single renormalisation constant 
of the auxiliary theory is in fact finite and, when this is taken into account, it follows 
from equation (15)  that 

where we have denoted by H the Fourier transform of the renormalised function 
- V 2 Z ~ = o [ ( - l ) " / n ! ]  W2,nly,=x17 and introduced the regularised form ( 5 )  of the $$ 
correlator. Using the standard normalisation condition [aG-'( p2) /dp2]1p2=w2 = 1 we 
obtain the relation 

Z , = C e x p  --In- (: :) 
where the constant C is independent of p. From this relation and the definition (4) 
it follows that 

'YO = 8/4r  

which is a perturbatively exact result. 
To complete the analysis, we have to prove that the auxiliary field theory (10) does 

not contain divergences in the limit h+a. We have already shown that this field 
theory may be renormalised by a single renormalisation constant, which we shall extract 
from the simplest Green function ((p$)). Let us introduce the matrix T, which is the 
solution of the equation 

(16) 
dk 
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where PI1 is the projection operator P k l ( k )  = kmkl /k2 .  From the definition (8) of V it 
follows that 

On the other hand, in two dimensions the projection operators are related through the 
transformation EPI'E-' = P' , wh ere E,, is the totally antisymmetric matrix with the 
normalisation e12 = 1. Therefore, equation (17) may be cast into the form 

which, together with equation (16), implies 

E m ,  4; + ) & - I  = -T(P, 4 ;  -9). 

Averaging over 9 we obtain E (  T)E-' = - ( T ) ,  therefore 

Tr( T) = 0. (18) 

The perturbative solution for ( T) contains at most logarithmic primitive divergences, 
which must be of the form CS,,, where C is a quantity, singular at the limit A + CO. 
From relation (18), however, it follows that this constant is zero, and the quantity (T) 
is finite after subtraction of possible subdivergences. Due to the connection between 
R and T 

which follows from equations (9) and (16), we conclude that this is true also for the 
quantity (R)=((cp$))= W,, thus confirming that the field theory (10) is free of diver- 
gences. 

In conclusion, we have shown that at the upper critical dimension d = d, the 
anomalous diffusion coefficient for the problem of random walk in a random potential 
is given perturbatively exactly by the one-loop contribution in the two-dimensional 
case d c = 2 .  Therefore the exponent v is equal to v = ( 2 + g / 4 r ) - ' ,  which implies 
subdiffusive behaviour for g > 0. Two-loop calculations for the generalised model [ 6 ] ,  
in which the correlation function of the random potential is such that d,> 2 ,  suggest 
that this might be true also for the generalised model. Unfortunately, the present 
approach cannot be applied to this case, and new ideas are needed to clarify this 
question. 
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